Pojdi na vsebino

Funkcija gama

Iz Wikipedije, proste enciklopedije
(Preusmerjeno s strani Eulerjeva funkcija gama)
Graf funkcije Γ na realni premici
Absolutna vrednost funkcije Γ v kompleksni ravnini
Razširjena različica funkcije Γ v kompleksni ravnini

Fúnkcija gáma (tudi Eulerjeva funkcija gama[1]),je v matematiki specialna funkcija, ki razširja pojem fakultete na kompleksna števila. Zapisa se je domislil Adrien-Marie Legendre, funkcijo samo pa je uvedel Leonhard Euler. Če je realni del kompleksnega števila z pozitiven, potem integral:

konvergira absolutno. Z integracijo po delih je moč pokazati, da velja:

Ker je Γ(1) = 1, odtod sledi:

za vsa naravna števila n. Z analitičnim nadaljevanjem je moč razširiti Γ(z) v meromorfno funkcijo definirano za vsa kompleksna števila z razen z = 0, −1, −2, −3, ..., kjer ima pol. Funkcija gama se imenuje ta razširjena različica.

Funkcija gama nima ničel. Morda najbolj znana vrednost funkcije gama pri necelih številih je:

Funkcija gama ima pol reda 1 pri z = −n za vsako naravno število n; residuum je tam podan kot:

Naslednja multiplikativna oblika funkcije gama velja za vsa kompleksna števila z, ki niso nepozitivna cela števila:

Tu je γ Euler-Mascheronijeva konstanta.

Iz funkcionalne enačbe lahko izpeljemo:

od koder sledi, da ima funkcija pri negativnih celih argumentih in pri argumentu enakem 0 pole lihe stopnje.

Posebne vrednosti funkcije Γ

[uredi | uredi kodo]

Sklici

[uredi | uredi kodo]
  1. »Euler's Gamma function«. lmfdb.org (v angleščini). 24. april 2015. Arhivirano iz prvotnega spletišča dne 15. junija 2015. Pridobljeno 13. junija 2015.

Zunanje povezave

[uredi | uredi kodo]