Pojdi na vsebino

Transponirana matrika

Iz Wikipedije, proste enciklopedije
(Preusmerjeno s strani Transponiranje)

Transponirana matrika (oznaka , včasih tudi ) je matrika, ki nastane iz matrike pri eni izmed naslednjih enakovrednih operacij:

  • zapišemo vrstice matrike kot stolpce matrike
  • zapišemo stolpce matrike kot vrstice matrike
  • zrcalimo matriko preko glavne diagonale
  • zavrtimo matriko za 90º v smeri gibanja urinega kazalca in zrcalimo sliko vodoravno, da dobimo .

To pomeni da vsi postanejo . Postopek zamenjave vrstic in stolpcev se imenuje transponiranje matrike in je zgled enočlene operacije.

Zgledi

[uredi | uredi kodo]

Značilnosti

[uredi | uredi kodo]

Za matriki , in skalar so znane naslednje značilnosti transponiranja matrik:

Transpozicija vsote matrik je vsota transponiranih matrik.
Opozorilo: vrstni red množiteljev je obrnjen. Iz tega lahko zaključimo, da je kvadratna matrika obrnljiva matrika (obstoja inverzna), samo, če je obrnljiva tudi , v tem primeru je
Transponiranje skalarja nam da isti skalar.
Determinanta kvadratne matrike je enaka determinanti transponirane.
  • Skalarni produkt dveh vektorjev, ki ju določata stolpca ( in ) se izračuna kot
kjer je uporabljen Einsteinov zapis za
Transponirana matrika obrnljive matrike (inverzne) je tudi obrnljiva matrika, njena obrnjena matrika je transponirana obrnjene originalne matrike.
  • Če je kvadratna matrika, potem so njene lastne vrednosti enake lastnim vrednostim njene transponirane matrike.

Posebne transponirane matrike

[uredi | uredi kodo]
  • Kvadratna matrika, katere transponirana je tudi obrnjena, se imenuje ortogonalna matrika. To pomeni da je matrika ortogonalna, če je
, kjer je enotska matrika za katero velja
  • Kvadratna matrika, katere transponirana, je enaka negativni, je poševnosimetrična matrika, to pomeni, da je poševnosimetrična, če je

Zunanje povezave

[uredi | uredi kodo]
  • Weisstein, Eric Wolfgang. »Transpose«. MathWorld.