Fisherjeva porazdelitev
F porazdelitev | ||
---|---|---|
oznaka | ||
parametri | (prostostni stopnji) | |
interval | ||
funkcija gostote verjetnosti (pdf) |
||
zbirna funkcija verjetnosti (cdf) |
||
pričakovana vrednost | za | |
mediana | ||
modus | za | |
varianca | za | |
simetrija | za | |
sploščenost | glej lastnosti - levo | |
entropija | ||
funkcija generiranja momentov (mgf) |
ne obstoja, momenti so lahko določeni kjerkoli | |
karakteristična funkcija | določljiva kjerkoli |
F porazdelitev (tudi Fisherjeva porazdelitev) je družina nesimetričnih zveznih verjetnostnih porazdelitev [1][2][3]. Znana je tudi kot Snedekorjeva F porazdelitev ali Fisher-Snedekorjeva porazdelitev (imenuje se po angleškem statistiku, evolucijskem biologu in genetiku Ronaldu Aylmerju Fisherju (1890 – 1962) in ameriškem matematiku in statistiku Georgu Waddelu Snedekorju (1881 – 1974)).
Najbolj pogosto se uporablja v analizi variance (ugotavljanje, če imata dva vzorca isto varianco, glej tudi F test za hipoteze o enakosti varianc v dveh normalno porazdeljenih statističnih populacijah) in v regresijski analizi. Porazdelitev sama je porazdelitev razmerja dveh neodvisnih spremenljivk, ki imata porazdelitvi hi-kvadrat (podobno porazdelitvi varianc v normalno porazdeljenih vzorcih)
kjer sta
- in dve neodvisni spremenljivki, ki imata porazdelitev hi-kvadrat
- in pa pripadajoči prostostni stopnji porazdelitve (glej porazdelitev hi-kvadrat).
Lastnosti
[uredi | uredi kodo]Funkcija verjetnosti
[uredi | uredi kodo]Funkcija gostote verjetnosti za F porazdelitev je
kjer je
Zbirna funkcija verjetnosti
[uredi | uredi kodo]Zbirna funkcija verjetnosti je enaka
kjer je
- regulirana nepopolna funkcija beta
Pričakovana vrednost
[uredi | uredi kodo]Pričakovana vrednost je za enaka
- .
Varianca
[uredi | uredi kodo]Varianca je za enaka
- .
Sploščenost
[uredi | uredi kodo]Sploščenost je enaka
kjer je
Povezave z drugimi porazdelitvami
[uredi | uredi kodo]- če je potem ima slučajna spremenljivka hi-kvadrat porazdelitev
- Porazdelitev je enaka Hotellingovi t kvadrat porazdelitvi .
- Če je potem velja tudi .
- Če ima spremenljivka Študentovo t porazdelitev potem velja .
- Če je in potem velja za slučajno spremenljivko , da ima porazdelitev beta .
- Če je kvantil za in je kvantil for potem je .
Opombe in sklici
[uredi | uredi kodo]- ↑ Johnson, Norman Lloyd; Samuel, Kotz; N., Balakrishnan (1995). Continuous Univariate Distributions, Volume 2 (Second Edition, Section 27). Wiley. ISBN 0-471-58494-0.
- ↑ NIST (2006). Engineering Statistics Handbook - F Distribution
- ↑ Mood, Alexander; Franklin A., Graybill; Duane C., Boes (1974). Introduction to the Theory of Statistics (Third Edition, p. 246-249). McGraw-Hill. ISBN 0-07-042864-6.
Zunanje povezave
[uredi | uredi kodo]- Prikaz simulacije F porazdelitve (angleško)
- Kalkulator za F porazdelitev Arhivirano 2010-01-26 na Wayback Machine. (angleško)
- Opis uporabe f porazdelitve (angleško)