Pojdi na vsebino

Notacija orbifold

Iz Wikipedije, proste enciklopedije

Notacija orbifold je v geometriji sistem, ki pomaga prikazovati simetrijske grupe v dvorazsežnem prostoru, ki ima konstantno ukrivljenost. Prednost te vrste notacije je v tem, da opisuje te grupe na način, ki označuje mnoge značilnosti grup.

Notacijo je izumil ameriški matematik William Thurston (rojen 1946), populariziral pa jo je angleški matematik John Horton Conway (rojen 1937).

Definicija notacije

[uredi | uredi kodo]

Naslednje vrste evklidskih transformacij so možne v grupi, ki jo opisuje notacija orbifold:

  • zrcaljenje preko premice (ali ravnine)
  • translacija s pomočjo vektorja
  • vrtenje končnega reda okoli točke
  • neskončno vrtenje okoli premice v trirazsežnem prostoru
  • zrcaljenje-drsenje (to je zrcaljenje, ki mu sledi translacija

Vse translacije, ki nastopajo, sestavljajo nezvezno podgrupo grup simetrije.

Vsaka grupa je v notaciji orbifold označena s končnim zaporedjem znakov, ki so lahko

  • pozitivna cela števila
  • znak za neskončnost
  • zvezdica, *
  • znak
  • znak

Znaki, zapisani v mastnem tisku predstavljajo simetrijsko grupo v evklidskem trirazsežnem prostoru.

Vsak znak pripada drugi transformaciji:

  • celo število n na levi strani zvezdice označuje vrtenje reda n okoli točke
  • celo število n desno od zvezdice je transformacija reda 2n , ki pomeni vrtenje okoli točke in zrcaljenje preko premice (ali ravnine)
  • x pomeni zrcaljenje z drsenjem
  • znak pomeni neskončno vrtilno simetrijo preko premice; pojavi se lahko samo za mastno zapisane grupe. Lahko rečemo, da so te grupe podgrupe simetrij v evklidski ravnini s samo eno neodvisno translacijo. Frizijske grupe nastopajo na ta način.
  • posebni znak o označuje, da sta natanko dve linearno neodvisni translaciji.

Kiralnost in akiralnost

[uredi | uredi kodo]

Objekt je kiralen, če njegova grupa simetrije ne vsebuje zrcaljenja. V nasprotnem primeru je akiralen. Pripadajoči orbifold je orientabilen v primeru kiralnosti, sicer pa je neorientabilen.

Eulerjeva karakteristika

[uredi | uredi kodo]

Eulerjeva karakteristika orbifolda se lahko prebere iz Conwayjevega simbola. Vsak znak ima svoj pomen :

  • n brez ali pred njo šteje kot
  • n za zvezdico šteje kot
  • zvezdica in x šteje kot 1
  • šteje kot 2

Z odštevanjem vsote teh vrednosti od 2 dobimo Eulerjevo karakteristiko.

Če je vsota tega enaka 2, je red neskončen. To pa pomeni, da notacija predstavlja tapetno ali frizijsko grupo.

Enake grupe

[uredi | uredi kodo]

Naslednje grupe so izomorfne:

  • 1* in *11
  • 22 in 221
  • *22 in *221
  • 2* in 2*1

Drugi objekti

[uredi | uredi kodo]

Simetrija dvorazsežnih objektov brez translacijske simetrije se lahko opiše z vrsto trirazsežne simetrije z dodajanjem tretje razsežnosti tako, da ne doda ali odstrani simetrijo.


Prava snežinka ima simetrijo *66.

petkotnik ima simetrijo *55, celotna slika s puščicami pa 55.

Zastava Hong Konga ima 5 kratno simetrijo vrtenja, 55.

Pripadajoče tabele

[uredi | uredi kodo]

Sferni

[uredi | uredi kodo]
simetrija 532
grupe sferne simetrije: (n=3,4,..)[1]
oznaka
orbifold
Coxeter Schönflies Hermann–Mauguin Order
poliederska grupa
*532 [3,5] Ih 53m 120
532 [3,5]+ I 532 60
*432 [3,4] Oh m3m 48
432 [3,4]+ O 432 24
*332 [3,3] Td 43m 24
3*2 [3+,4] Th m3 24
332 [3,3]+ T 23 12
diedrska in ciklične grupe: n=3,4,5...
*22n [2,n] Dnh n/mmm ali 2nm2 4n
2*n [2+,2n] Dnd 2n2m ali nm 4n
22n [2,n]+ Dn n2 2n
*nn [n] Cnv nm 2n
n* [2,n+] Cnh n/m ali 2n 2n
nx [2+,2n+] S2n 2n ali n 2n
nn [n]+ Cn n n
posebni primeri
*222 [2,2] D2h 2/mmm ali 22m2 8
2*2 [2+,4] D2d 222m ali 2m 8
222 [2,2]+ D2 22 4
*22 [2] C2v 2m 4
2* [2,2+] C2h 2/m ali 22 4
2x [2+,4+] S4 22 ali 2 4
22 [2]+ C2 2 2
*221 [1,2] D1h 1/mmm ali 21m2 4
2*1 [2+,2] D1d 212m ali 1m 4
221 [1,2]+ D1 12 2
*11 [ ] C1v 1m 2
1* [2,1+] C1h 1/m ali 21 2
1x [2+,2+] S2 21 ali 1 2
11 [ ]+ C1 1 1

Evklidska ravnina

[uredi | uredi kodo]

Frizijske grupe

[uredi | uredi kodo]
Frizijske grupe
notacije opis zgledi
IUC orbifold Coxeter Schönflies*
p1 ∞∞ [∞,1]+ C Samo translacije. Ta grupa se generira posamezno, z generatorjem, ki je najmanjša razdalja v kateri se vzorec še ponavlja. Abstraktna grupa: Z, grupa celih števil pod seštevanjem.
p11g ∞x [∞+,2+] S Drsenje-zrcaljenje in translacije. Ta grupa se generira z drsnim zrcaljenjem skupaj s translacijami, ki so kombinacije dveh drsnih zrcaljenj. Abstraktna grupa: Z
p11m ∞* [∞+,2] C∞h Translacije v horizontalni smeri in drsno zrcaljenje. Ta grupa se generira s translacijo in zrcaljenjem v horizontalni osi. Abstraktna grupa: Z × Z2
p1m1 *∞∞ [∞,1] C∞v Translacije in zrcaljenje vzdolž vertikalnih črt. Ta grupa je ista kot netrivialna grupa v enorazsežnem primeru.Generirana je s translacijo in zrcaljenjem v vertikalni osi. Elementi v tej grupi odgovarjajo izometrijam (ali enakovredno bijektivnim afinim transformacijam) množice celih števil in je tako izomorfna množici polneposrednih produktov s celimi števili z Z2. Abstraktna grupa: Dih, neskončna diedrska grupa.
p2 22∞ [∞,2]+ D Translacije in vrtenja za 180°. Grupa se generira s translacijo in vrtenjem za 180° . Abstraktna grupa: Dih
p2mg 2*∞ [∞,2+] D∞d Zrcaljenje preko določenih vertikalnih črt, drsno zrcaljenje, translacije in vrtenja. Translacije v tem primeru nastanejo z drsnim zrcaljenjem. Ta grupa se generira z drsnim zrcaljenjem ali vrtenjem ali vertikalnim zrcaljenjem. Abstraktna grupa: Dih
p2mm *22∞ [∞,2] D∞h Translacije, drsno zarcaljenje, zrcaljenje v obeh oseh in vrtenja za 180°. Ta grupa je "največja" frizijska grupa in potrebuje tri generatorje z eno skupino generatojev, ki so sestavljeni iz translacije in zrcaljenja v horizontalni osi in zrcaljenja preko vertikalne osi. Abstraktna grupa: Dih × Z2
*Schönfliesova notacija točkovne grupe je tukaj razširjena kot neskončni primer ekvivalenta diedrskih točkovnih simetrij.

Tapetne grupe

[uredi | uredi kodo]
simetrija 632
17 tapetnih grup[2]
oznaka
orbifold
Coxeter Hermann–Mauguin Speiser
Niggli
Polya
Guggenhein
Fejes Toth
Cadwell
*632 [6,3] p6m C(I)6v D6 W16
632 [6,3]+ p6 C(I)6 C6 W6
*442 [4,4] p4m C(I)4 D*4 W14
4*2 [4+,4] p4g CII4v Do4 W24
442 [4,4]+ p4 C(I)4 C4 W4
*333 [3[3]] p3m1 CII3v D*3 W13
3*3 [6,3+] p31m CI3v Do4 W23
333 [3[3]]+ p3 CI3 C3 W3
*2222 [∞,2,∞] pmm CI2v D2kkkk W22
2*22 [∞,2+,∞] cmm CIV2v D2kgkg W12
22* [(∞,2)+,∞] pmg CIII2v D2kkgg W32
22x [∞+,2+,∞+] pgg CII2v D2gggg W42
2222 [∞,2,∞]+ p2 C(I)2 C2 W2
** [∞,2,∞+] pm CIs D1kk W21
*x [∞,2+,∞+] cm CIIIs D1kg W11
xx [(∞,2)+,∞+] pg CII2 D1gg W31
o [∞+,2,∞+] p1 C(I)1 C1 W1

Hiperbolična ravnina

[uredi | uredi kodo]
simetrija 732

Prvih nekaj hiperboličnih grup, urejenih po njihovih orbifold značilnostih je:

Hiperbolične simetrijske grupe[3]
(-1/znak) orbifold Coxeter
(84) *237 [7,3]
(48) *238 [8,3]
(42) 237 [7,3]+
(40) *245 [5,4]
(24) *2.3.12, *246, *334, 3*4, 238 [12,3], [6,4], [(4,3,3)], [3+,8], [8,3]+
(20) *2.3.15, *255, 5*2, 245 [15,3], [5,5], [5+,4], [5,4]+
(18+2/3) *247 [7,4]
(18) *2.3.18, 239 [18,3], [9,3]+
(16) *2.3.24, *248 [24,3], [8,4]
(15) *2.3.30, *256, *335, 3*5, 2.3.10 [30,3], [6,5], [(5,3,3)], [3+,10], [10,3]+
(14+2/5) *2.3.36, *249 [36,3], [9,4]
(13+1/3) *2.3.60, *2.4.10 [60,3], [10,4]
(13+1/5) *2.3.66, 2.3.11 [66,3], [11,3]+
(12+8/11) *2.3.105, *257 [105,3], [7,5]
(12+4/7) *2.3.132, *2.4.11 ... *23∞, *2.4.12, *266, 6*2 [132,3], [11,4], ..., [∞,3], [12,4], [6,6], [6+,4]
(12) *336, 3*6, *344, 4*3, *2223, 2*23, 2.3.12, 246, 334 [(6,3,3)], [3+,12], [(4,4,3)], [4+,6], ... [12,3]+, [6,4]+ [(4,3,3)]+
...

Opombe in sklici

[uredi | uredi kodo]
  1. Symmetries of Things, Dodatek A, stran 416
  2. Symmetries of Things, dodatek A, stran 416
  3. Symmetries of Things, poglavje 18, More on Hyperbolic groups, Enumerating hyperbolic groups, stran 239

Zunanje povezave

[uredi | uredi kodo]